LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Strategies for numerical simulation of linear friction welding of metals: a review

Photo from archive.org

Linear friction welding (LFW) is a solid-state joining process used to weld non-axisymmetric components. Material joining is obtained through the reciprocating motion of two specimens undergoing an axial force. During… Click to show full abstract

Linear friction welding (LFW) is a solid-state joining process used to weld non-axisymmetric components. Material joining is obtained through the reciprocating motion of two specimens undergoing an axial force. During this process, the heat source is determined by the frictional work transformed into heat. This results in a local softening of the material and plays a key role in the onset of the bonding conditions. In this paper, a critical analysis of the different approaches used to simulate the LFW processes is provided. The focus of the paper is the comparison of different modeling strategies and the most relevant outputs available, i.e. temperature, strain and stress distribution, material flow, axial shortening and residual stress. Major issues arising due to the complexity of the process are discussed, highlighting strengths and weaknesses of each approach.

Keywords: numerical simulation; friction welding; linear friction; simulation linear; strategies numerical

Journal Title: Production Engineering
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.