LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Morphometrical and biomechanical analyses of a stentless bioprosthetic valve: an implication to avoid potential primary tissue failure

Photo by rocinante_11 from unsplash

ObjectivesStentless bioprosthetic valves provide hemodynamic advantages over stented valves as well as excellent durability. However, some primary tissue failures in bioprostheses have been reported. This study was conducted to evaluate… Click to show full abstract

ObjectivesStentless bioprosthetic valves provide hemodynamic advantages over stented valves as well as excellent durability. However, some primary tissue failures in bioprostheses have been reported. This study was conducted to evaluate the morphometrical and biomechanical properties of the stentless Medtronic Freestyle™ aortic root bioprosthesis, to identify any arising problem areas, and to speculate on a potential solution.MethodsThe three-dimensional heterogeneity of the stentless bioprosthesis wall was investigated using computed tomography. The ascending aorta and the right, left, and non-coronary sinuses of Valsalva were resected and examined by an indentation test to evaluate their biomechanical properties.ResultsThe non-coronary sinus of Valsalva was significantly thinner than the right sinus of Valsalva (p < 0.01). Young’s modulus, calculated as an indicator of elasticity, was significantly greater at the non-coronary sinus of Valsalva (430.7 ± 374.2 kPa) than at either the left (190.6 ± 70.6 kPa, p < 0.01) or right sinuses of Valsalva (240.0 ± 56.5 kPa, p < 0.05).ConclusionsBased on the morphometrical and biomechanical analyses of the stentless bioprosthesis, we demonstrated that there are differences in wall thickness and elasticity between each sinus of Valsalva. These differences suggest that the non-coronary sinus of Valsalva is the most vulnerable and at greater risk of tissue failure. The exclusion of the non-coronary sinus of Valsalva may be beneficial to mitigate the long-term risks of tissue failure in the stentless bioprosthesis.

Keywords: morphometrical biomechanical; valsalva; tissue failure; sinus valsalva; non coronary

Journal Title: General Thoracic and Cardiovascular Surgery
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.