Ecological Risk Assessment faces the challenge of determining the impact of invasive species on biodiversity conservation. Although many statistical methods have emerged in recent years in order to model the… Click to show full abstract
Ecological Risk Assessment faces the challenge of determining the impact of invasive species on biodiversity conservation. Although many statistical methods have emerged in recent years in order to model the evolution of the spatio-temporal distribution of invasive species, the notion of extent of occurrence, formally defined by the International Union for the Conservation of Nature, has not been properly handled. In this work, a novel and flexible reconstruction of the extent of occurrence from occurrence data will be established from nonparametric support estimation theory. Mathematically, given a random sample of points from some unknown distribution, we establish a new data-driven method for estimating its probability support S in general dimension. Under the mild geometric assumption that S is $$r-$$ r - convex, the smallest $$r-$$ r - convex set which contains the sample points is the natural estimator. A stochastic algorithm is proposed for determining an optimal estimate of r from the data under regularity conditions on the density function. The performance of this estimator is studied by reconstructing the extent of occurrence of an assemblage of invasive plant species in the Azores archipelago.
               
Click one of the above tabs to view related content.