LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hierarchical decomposition based on a variation of empirical mode decomposition

Photo by sakethgaruda from unsplash

Adaptive methods of signal analysis have proved a very useful tool for analysis of non-stationary signals. This is due to the ability of these methods to adapt to the local… Click to show full abstract

Adaptive methods of signal analysis have proved a very useful tool for analysis of non-stationary signals. This is due to the ability of these methods to adapt to the local structures of the signals being analysed, as these methods are not constrained by a fixed basis. Empirical mode decomposition (EMD) is among the more recent data-adaptive signal decomposition methods, which decomposes a given signal into modes which are hierarchically arranged based on their frequency content. In this paper, we will present a novel adaptive hierarchical decomposition scheme based on a novel modification of EMD, namely empirical mode decomposition-modified peak selection (EMD-MPS). EMD-MPS allows a time-scale-based signal decomposition, thereby allowing control over the decomposition process, not possible in the original EMD algorithm. Using time-scale-based decomposition and the properties of EMD-MPS, a given signal can be decomposed into octave frequency bands, with the centre frequency of the separated modes given by the frequency separation criterion of EMD-MPS. The spectral limits of the separated bands are established, and their relation with the centre frequency derived empirically. The method is validated by its application to simulated and real signals.

Keywords: mode decomposition; frequency; emd; empirical mode; decomposition

Journal Title: Signal, Image and Video Processing
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.