LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Classification of normal and abnormal brain MRI slices using Gabor texture and support vector machines

Photo from wikipedia

In computational and clinical environments, autoclassification of brain magnetic resonance image (MRI) slices as normal and abnormal is challenging. The purpose of this study is to investigate the computer vision… Click to show full abstract

In computational and clinical environments, autoclassification of brain magnetic resonance image (MRI) slices as normal and abnormal is challenging. The purpose of this study is to investigate the computer vision and machine learning methods for classification of brain magnetic resonance (MR) slices. In routine health-care units, MR scanners are being used to generate a massive number of brain slices, underlying the anatomical details. Pathological assessment from this medical data is being carried out manually by the radiologists or neuro-oncologists. It is almost impossible to analyze each slice manually due to the large amount of data produced by MRI devices at each moment. Irrefutably, if an automated protocol performing this task is executed, not only the radiologist will be assisted, but a better pathological assessment process can also be expected. Numerous schemes have been reported to address the issue of autoclassification of brain MRI slices as normal and abnormal, but accuracy, robustness and optimization are still an open issue. The proposed method, using Gabor filter and support vector machines, classifies brain MRI slices as normal or abnormal. Accuracy, sensitivity, specificity and ROC-curve have been used as standard quantitative measures to evaluate the proposed algorithm. To the best of our knowledge, this is the first study in which experiments have been performed on Whole Brain Atlas-Harvard Medical School (HMS) dataset, achieving an accuracy of 97.5%, sensitivity of 99%, specificity of 92% and ROC-curve as 0.99. To test the robustness against medical traits based on ethnicity and to achieve optimization, a locally developed dataset has also been used for experiments and remarkable results with accuracy (96.5%), sensitivity (98%), specificity (92%) and ROC-curve (0.97) were achieved. Comparison with state-of-the-art methods proved the overall efficacy of the proposed method.

Keywords: brain mri; using gabor; mri slices; normal abnormal; support vector; brain

Journal Title: Signal, Image and Video Processing
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.