LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Face age classification based on a deep hybrid model

Photo by chrisjoelcampbell from unsplash

Face age estimation, a computer vision task facing numerous challenges due to its potential applications in identity authentication, human–computer interface, video retrieval and robot vision, has been attracting increasing attention.… Click to show full abstract

Face age estimation, a computer vision task facing numerous challenges due to its potential applications in identity authentication, human–computer interface, video retrieval and robot vision, has been attracting increasing attention. In recent years, the deep convolutional neural networks (DCNN) have achieved state-of-the-art performance in age classification of face images. We propose a deep hybrid framework for age classification by exploiting DCNN as the raw feature extractor along with several effective methods, including fine-tuning the DCNN into a fine-tuned deep age feature extraction (FDAFE) model, introducing a new method of feature extracting, applying the maximum joint probability classifier to age classification and a strategy to incorporate information from face images more effectively to improve estimation capabilities further. In addition, we pre-process the original image to represent age information more accurately. Based on the discriminative and compact framework, state-of-the-art performance on several face image data sets has been achieved in terms of classification accuracy.

Keywords: age; age classification; face age; face; deep hybrid

Journal Title: Signal, Image and Video Processing
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.