LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Group-normalized deep CNN-based in-loop filter for HEVC scalable extension

Photo by papaioannou_kostas from unsplash

High Efficiency Video Coding (HEVC) is the recent video coding standard that can compress raw video at a higher compression state. The extension of HEVC, Scalable High Efficiency Video Coding… Click to show full abstract

High Efficiency Video Coding (HEVC) is the recent video coding standard that can compress raw video at a higher compression state. The extension of HEVC, Scalable High Efficiency Video Coding (SHVC), also has the similar compression phenomenon of HEVC in addition to the implementation of multiple single-layer HEVC streams along with the interlayer reference modules, although the layer-based SHVC incurs more artifacts after compression compared to HEVC resulting with severe degradation in the video quality. To ease this, in-loop filter is used to remove artifacts in H.265 video coding standard. Although the artifacts will be more severe for multiple-layered codec SHVC compared to single-layer HEVC. With the development in deep learning, a group-normalized deep convolutional neural network (gDCNN) is proposed for SHVC in-loop filter to enhance the performance. Initially, the troubles that are met while modeling the traditional CNN that includes normalization, learning capability and the loss functions are examined. Following, on the basis of statistical analysis, the proposed gDCNN is introduced to remove the artifacts efficiently. It is achieved by a group-wise normalization approach, a feature extraction and fusion and a precise loss function. The simulation setting shows 4.2% BD-BR decrement with 0.46 dB increment in BD-PSNR.

Keywords: group; video coding; hevc; loop filter; video

Journal Title: Signal, Image and Video Processing
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.