LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fuel combustion synthesis and upconversion properties of Yb3+ and Er3+ dual-doped ZrO2 nanocrystals

Photo from wikipedia

Ytterbia and erbia dual-doped zirconia (ZrO2: Yb3+, Er3+) nanophosphors were successfully synthesized by high-temperature fuel combustion at 1000 °C for 2 h. The effects of dopant concentration on the structure… Click to show full abstract

Ytterbia and erbia dual-doped zirconia (ZrO2: Yb3+, Er3+) nanophosphors were successfully synthesized by high-temperature fuel combustion at 1000 °C for 2 h. The effects of dopant concentration on the structure and upconversion properties were investigated by X-ray diffraction, transmission electron microscopy and photoluminescence, respectively. XRD patterns indicate that the main phase of products belongs to cubic ZrO2 fluorite-type structure. TEM results show that different fuels have great influence on the morphologies of dual-doped ZrO2 samples. Under 980 nm excitation, the glycine-calcined nanophosphors show high stimulated luminescence and doped-ion concentration-depended intensities. The intensely red upconversion emissions are attributed to the fact that the dual-doped Yb3+ and Er3+ ions result in the non-radiative relaxation, energy migration, and cross relaxation.

Keywords: fuel combustion; zro2; dual doped; upconversion properties; yb3 er3

Journal Title: Journal of Central South University
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.