LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis and characterization of Na0.44MnO2 nanorods/graphene composite as cathode materials for sodium-ion batteries

Photo by miracleday from unsplash

Na0.44MnO2 nanorods have been prepared by a hydrothermal method. The experimental parameters have been systematically investigated and optimized. The results show that Na0.44MnO2 nanorods obtained via the hydrothermal treatment at… Click to show full abstract

Na0.44MnO2 nanorods have been prepared by a hydrothermal method. The experimental parameters have been systematically investigated and optimized. The results show that Na0.44MnO2 nanorods obtained via the hydrothermal treatment at 200 °C for 16 h show the best electrochemical properties, which deliver the high initial discharge capacity of 110.7 mA·h/g at 50 mA/g in potential window 2.0–4.0 V To further improve their electrochemical properties, a ball milling process with graphene has been carried out to obtain Na0.44MnO2/graphene composite. The initial discharge capacity of Na0.44MnO2/graphene composite is 106.9 mA·h/g at a current density of 50 mA/g. After 100 cycles, the residual discharge capacity is 91.8 mA·h/g and the capacity retention rate is 85.9%, which is much higher than that of pristine Na0.44MnO2 nanorods (74.7%) at the same condition. What is more, when the current density reaches 500 and 1000 mA/g, the corresponding discharge capacities of Na0.44MnO2/graphene composite are about 89 and 78 mA·h/g, respectively, indicating outstanding rate capability.

Keywords: 44mno2 nanorods; na0 44mno2; graphene composite; discharge capacity

Journal Title: Journal of Central South University
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.