LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microstructural insight into permeability and water retention property of compacted binary silty clay

Photo from wikipedia

The durability of silty clay embankments is partially controlled by the moisture migration, which depends on soil hydraulic properties. This paper presents an experimental study of hydraulic properties of compacted… Click to show full abstract

The durability of silty clay embankments is partially controlled by the moisture migration, which depends on soil hydraulic properties. This paper presents an experimental study of hydraulic properties of compacted binary silty clay. Specimens with different mixing ratios and dry densities were prepared. Scanning electron microscopy and mercury intrusion porosimetry were used to characterise the microstructure of silty clay. Thereafter, falling-head permeability tests and water retention tests were conducted to study the permeability and water retention property, respectively. The results demonstrate that clay particles are dispersed and show preferred arrangements after compaction when the clay content is 100%. As the clay content decreases, the arrangement of clay particles is gradually disturbed because of the existence of silt particles, causing the formation of large pores around silt particles. When the dry density increases, the pores around silt particles significantly decrease. Moreover, the permeability of silty clay decreases but the water retention capacity increases with increasing clay content and dry density. This is because the silty clay with larger clay content and dry density has fewer large pores, which greatly restrains the flow of water. Both the permeability and water retention property of silty clay can be predicted from pore size distribution parameters.

Keywords: water retention; silty clay; permeability; clay

Journal Title: Journal of Central South University
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.