In this study, experiments were carried out to investigate aerodynamic characteristics of a high-speed train on viaducts in turbulent crosswinds using a 1:25 scaled sectional model wind-tunnel testing. Pressure measurements… Click to show full abstract
In this study, experiments were carried out to investigate aerodynamic characteristics of a high-speed train on viaducts in turbulent crosswinds using a 1:25 scaled sectional model wind-tunnel testing. Pressure measurements of two typical sections, one train-head section and one train-body section, at the windward and leeward tracks were conducted under the smooth and turbulence flows with wind attack angles between −6° and 6°, and the corresponding aerodynamic force coefficients were also calculated using the integral method. The experimental results indicate that the track position affects the mean aerodynamic characteristics of the vehicle, especially for the train-body section. The fluctuating pressure coefficients at the leeward track are more significantly affected by the bridge interference compared to those at the windward track. The effect of turbulence on the train-head section is less than that on the train-body section. Additionally, the mean aerodynamic force coefficients are almost negatively correlated to wind attack angles, which is more prominent for vehicles at the leeward track. Moreover, the lateral force plays a critical role in determining the corresponding overturning moment, especially on the train-body section. 基于缩尺比为1:25 的节段模型风洞试验,对湍流横风中高架桥上高速列车的气动特性进行研究。 在均匀流和湍流条件下,对−6°至6°风攻角范围内迎风和背风轨道上的典型车头和车身断面进行测压 试验,并采用积分法计算相应的气动力系数。实验结果表明,轨道位置对高速列车的平均气动特性有 影响,特别是对车身断面的平均气动特性。与迎风轨道处相比,背风轨道处的脉动压力受桥梁干扰影 响明显。湍流对车头断面的影响小于其对车身断面的影响。列车车头平均气动力系数与风攻角几乎呈 负相关,背风轨道上的车头断面尤其如此。此外,侧向力在决定相应的列车头车倾覆力矩时起着关键 作用,尤其是对车身截面。
               
Click one of the above tabs to view related content.