In this paper, we extend well-posedness notions to the split minimization problem which entails finding a solution of one minimization problem such that its image under a given bounded linear… Click to show full abstract
In this paper, we extend well-posedness notions to the split minimization problem which entails finding a solution of one minimization problem such that its image under a given bounded linear transformation is a solution of another minimization problem. We prove that the split minimization problem in the setting of finite-dimensional spaces is Levitin–Polyak well-posed by perturbations provided that its solution set is nonempty and bounded. We also extend well-posedness notions to the split inclusion problem. We show that the well-posedness of the split convex minimization problem is equivalent to the well-posedness of the equivalent split inclusion problem.
               
Click one of the above tabs to view related content.