LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Existence and convergence theorems for Bregman best proximity points in reflexive Banach spaces

Photo by jakubpabis from unsplash

In recent years, there has been considerable interest in the study of best proximity points. In this paper, using Bregman functions and Bregman distances, we first prove the existence of… Click to show full abstract

In recent years, there has been considerable interest in the study of best proximity points. In this paper, using Bregman functions and Bregman distances, we first prove the existence of Bregman best proximity points in a reflexive Banach space. We then prove convergence results of Bregman best proximity points for Bregman cyclic contraction mappings in the setting of Banach spaces. It is well known that the Bregman distance does not satisfy either the symmetry property or the triangle inequality which are required for standard distances. So, Bregman distances enable us to provide affirmative answers to two problems raised by Eldred and Veeramani (J Math Anal Appl 323:1001–1006, 2006) and Al-Thagafi and Shahzad (Nonlinear Anal 70:3665–3671, 2009) concerning the existence of best proximity points for a cyclic contraction map in a reflexive Banach space. This can be done in the absence of either symmetry property or the triangle inequality which are required for standard distances. Our results improve and generalize many known results in the current literature.

Keywords: proximity points; reflexive banach; best proximity; bregman best

Journal Title: Journal of Fixed Point Theory and Applications
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.