The aim of this paper is to study Riemann–Hilbert problems for Hardy space of a class of meta-analytic functions defined on the unit disc. Here, the meta-analytic functions we focus… Click to show full abstract
The aim of this paper is to study Riemann–Hilbert problems for Hardy space of a class of meta-analytic functions defined on the unit disc. Here, the meta-analytic functions we focus on are null-solutions to a class of polynomially Cauchy–Riemann equations. We first establish decomposition theorems for Hardy space of meta-analytic functions defined on the unit disc, and use them to characterize the boundary behavior of Hardy space of meta-analytic functions defined on the unit disc. Then, we make full use of these decomposition theorems and a transform constructed to solve the Riemann–Hilbert problem for Hardy space of a class of meta-analytic functions in two different cases of the parameter involved, separately. Finally, we give explicit integral expressions of solutions and conditions of solvability, respectively.
               
Click one of the above tabs to view related content.