LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Observation of near-inertial internal waves on the continental slope in the northwestern South China Sea

Photo by mbrunacr from unsplash

Based on nearly 3 months of moored acoustic Doppler current profiler records on the continental slope in the northwestern South China Sea (SCS) in 2006, this study examines temporal and… Click to show full abstract

Based on nearly 3 months of moored acoustic Doppler current profiler records on the continental slope in the northwestern South China Sea (SCS) in 2006, this study examines temporal and vertical characteristics of near-inertial internal waves (NIW). Rotary frequency spectrum indicates that motions in the near-inertial frequency are strongly polarized, with clockwise (CW) energy exceeding counterclockwise (CCW) by about a factor of 10. Wavelet analysis exhibits an energy peak exceeding the 95% confidence level at the frequency of local inertial during the passage of typhoon Xangsane (24 September to 4 October). This elevated near-inertial kinetic energy (NIKE) event possesses about a 4 days delay correlation with the time integral of energy flux induced by typhoon, indicating an energy source of wind. Further analysis shows that the upward phase velocity of this event is 3.8 m h−1 approximately, corresponding to a vertical wavelength of about 125 m if not taking the redshift of local inertial frequency into account. Rotary vertical wavenumber spectrum exhibits the dominance of clockwise-with-depth energy, indicating downward energy propagation and implying a surface energy source. Dynamical modes suggest that mode 1 plays a dominant role at the growth stage of NIW, whereas major contribution is from higher modes during the penetration of NIKE into the ocean interior.

Keywords: near inertial; energy; continental slope; china; slope northwestern; northwestern south

Journal Title: Journal of Ocean University of China
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.