LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Solar photocatalytic decolorization of synthetic dye solution using pilot scale slurry type falling film reactor

Photo from wikipedia

Ag deposited TiO2 was prepared by simple chemical reduction method and its photocatalytic efficiency was evaluated for the decolorization of methylene blue dye using pilot scale slurry type falling film… Click to show full abstract

Ag deposited TiO2 was prepared by simple chemical reduction method and its photocatalytic efficiency was evaluated for the decolorization of methylene blue dye using pilot scale slurry type falling film reactors (FFR) under sunlight. The characterization of the prepared catalysts by XRD, TEM, EDAX, DRS and PL confirmed that silver, which acts as electron trap, was deposited over the TiO2 surface. The operational parameters, such as catalyst loading, concentration of the dye solution, pH of the slurry, addition of oxidizing agents and effect of different substrates, were optimized. The photocatalytic efficiency of Ag deposited TiO2 increased two-fold times than pure TiO2 and the maximum decolorization of dye was observed under acidic conditions. The reaction rate significantly increased with the addition of oxidizing agent H2O2. The ceramic tile as well as double skin reactor have higher photocatalytic efficiency than glass as substrate. In addition, Ag-deposited TiO2 photocatalyst could be easily recovered by simple sedimentation process and reused for repeated experimental cycles with more than 95% decolorization efficiency.

Keywords: using pilot; pilot scale; deposited tio2; dye; slurry; decolorization

Journal Title: Korean Journal of Chemical Engineering
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.