LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis of a new diamine and its effect on the residual stress of colorless polyimide

Photo by elisa_ventur from unsplash

A new diamine was designed and synthesized to improve the flexibility of colorless polyimides by reducing residual stress. Four variations of colorless polyimides with the same dianhydride (4,4′-(hexafluoroisopropylidene)-diphthalic) and four… Click to show full abstract

A new diamine was designed and synthesized to improve the flexibility of colorless polyimides by reducing residual stress. Four variations of colorless polyimides with the same dianhydride (4,4′-(hexafluoroisopropylidene)-diphthalic) and four different diamines (bis[4-(3-aminophenoxy)-phenyl] sulfone, bis(3-aminophenyl) sulfone, 2,2′-bis(trifluoromethyl)benzidine, and 2,2-bis(4-aminophenyl)-hexafluoropropane) were used. A series of colorless polyimides were prepared by adding the new diamine. The carbon and ether bonds between the benzene rings of the new diamine affected the flexibility and optical properties of colorless polyimide. The synthesis of the new diamine was confirmed by NMR measurements. Furthermore, the decrease in residual stress at room temperature and the glass transition temperature was confirmed. The effect of the new diamine was most evident for polyimide with a bulky and rigid structure. Though a slight yellow color appears because of the broken charge transfer complex balance, controlling the content of the new diamine will allow application of polyimides in flexible display.

Keywords: residual stress; diamine; colorless polyimide; new diamine

Journal Title: Korean Journal of Chemical Engineering
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.