LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Gd3+ doped Fe3O4 nanoparticles with proper magnetic and supercapacitive characteristics: A novel synthesis platform and characterization

Photo from archive.org

A novel electrochemical procedure was developed for the facile preparation of Gd-doped iron oxide nanoparticles (GdIO-NPs). A simple galvanostatic deposition (i=10 mA cm-2) was done in an additive-free aqueous solution… Click to show full abstract

A novel electrochemical procedure was developed for the facile preparation of Gd-doped iron oxide nanoparticles (GdIO-NPs). A simple galvanostatic deposition (i=10 mA cm-2) was done in an additive-free aqueous solution containing FeCl2·4H2O, Fe(NO3)3·9H2O and GdCl3·6H2O. The XRD, FE-SEM, EDS and TEM characterizations showed that the product is composed of 15% GdIO-NPs with 10 nm in size. VSM analysis proved that the GdIO-NPs are superparamagnetic. The cyclic voltammetry and charge-discharge tests showed that the prepared GdIO-NPs are capable to deliver specific capacity as high as 190.1 F g-1 at 0.5A g-1 and capacity retention of 95.1% after 2000 cycling. Based on the results, it was concluded that the developed electrochemical strategy acts as an efficient procedure for the preparation of lanthanide doped MNPs with proper magnetic and supercapacitive characters.

Keywords: proper magnetic; doped fe3o4; fe3o4 nanoparticles; gd3 doped; gdio nps; magnetic supercapacitive

Journal Title: Korean Journal of Chemical Engineering
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.