LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanostructured colloidal quantum dots for efficient electroluminescence devices

Photo from wikipedia

The exceptional quality of light generated from colloidal quantum dots has attracted continued interest from the display and lighting industry, leading to the development of commercial quantum dot displays based… Click to show full abstract

The exceptional quality of light generated from colloidal quantum dots has attracted continued interest from the display and lighting industry, leading to the development of commercial quantum dot displays based on the photoluminescence down-conversion process. Beyond this technical level, quantum dots are being introduced as emissive materials in electroluminescence devices (or quantum dot-based light-emitting diodes), which boast high internal quantum efficiency of up to 100%, energy efficiency, thinness, and flexibility. In this review, we revisit various milestone studies regarding the core/shell heterostructures of colloidal quantum dots from the viewpoint of electroluminescence materials. Development of nanostructured colloidal quantum dots advanced from core/shell heterostructure, core/thick shell formulation, and delicate control of confinement potential shape has demonstrated close correlation of the photophysical properties of quantum dots with the performance of electroluminescence device, which provided useful guidelines on the heterostructured quantum dots for mitigating or eliminating efficiency limiting phenomena in quantum dot light emitting diodes. To enable practical and high performance quantum dot-based electroluminescence devices in the future, integration of design concepts on the heterostructures with environmentally benign systems will be crucial.

Keywords: quantum; electroluminescence devices; quantum dot; colloidal quantum; quantum dots

Journal Title: Korean Journal of Chemical Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.