Novel composite materials composed of clay, foundry sand (FS), and fly-ash (FA) have been employed to immobilize TiO 2 for incorporating in-situ dual effect for the degradation of antibiotic ofloxacin.… Click to show full abstract
Novel composite materials composed of clay, foundry sand (FS), and fly-ash (FA) have been employed to immobilize TiO 2 for incorporating in-situ dual effect for the degradation of antibiotic ofloxacin. The in-situ generation of iron from the composite beads with surface active TiO 2 induced the dual effect of photo-Fenton and photocatalysis. FA/FS/TiO 2 beads illustrated the best results (92% removal) at optimized conditions in the batch reactor experiments. The increment in the rate constant along with a decrease in treatment time for the dual effect has proven the credentials of the in-situ dual effect. Synergy in first-order rate constant using dual process was 51% over the single processes of photo-Fenton and photocatalysis. After 35 recycles the viability of the composed beads was observed through SEM/EDS, UV-DRS and FT-IR analysis, which further justified its use industrially. Estimation of nitrate, nitrite, and ammonia as its by-products was performed for the confirmation of mineralization. Generation of the intermediate products was also identified through GC-MS analysis, and a degradation pathway was proposed. Toxicity test confirming the nontoxic nature of the treated solution was performed on E. coli grown in Miller’s Luria Bertani Broth nutrient medium.
               
Click one of the above tabs to view related content.