Partitioned analysis involves coupling of constituent models that resolve different scales or physics by allowing them to exchange inputs and outputs in an iterative manner. Through partitioning, simulations of complex… Click to show full abstract
Partitioned analysis involves coupling of constituent models that resolve different scales or physics by allowing them to exchange inputs and outputs in an iterative manner. Through partitioning, simulations of complex physical systems are becoming evermore present in the scientific modeling community, making the Verification and Validation (V&V) of partitioned models to quantifying the predictive capability of their simulations increasingly important. Partitioning presents unique challenges, as well as opportunities, for the V&V community. Verification gains a new level of complexity in partitioned models, as numerical errors can easily be introduced at the coupling interface where non-matching domains and models are integrated together. For validation, partitioned analysis allows the quantification of the uncertainties and errors in constituent models through comparison against separate-effect experiments conducted in independent constituent domains. Such experimental validation is important as uncertainties and errors in the predictions of constituents can be transferred across their interfaces, either compensating for each other or accumulating during iterative coupling operations. This paper reviews published literature on methods for assessing and improving the predictive capability of strongly coupled models of physical and engineering systems with an emphasis on advancements made in the last decade.
               
Click one of the above tabs to view related content.