LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Elemental and Chemical Mapping of High Capacity Intermetallic Li-ion Anodes with Transmission X-ray Microscopy

Photo from archive.org

X-ray nanotomography has been applied toward the three-dimensional (3D) imaging of a Li-ion battery alloy anode material (Cu6Sn5), and subsequent segmentation and analysis has been performed to distinguish the alloy… Click to show full abstract

X-ray nanotomography has been applied toward the three-dimensional (3D) imaging of a Li-ion battery alloy anode material (Cu6Sn5), and subsequent segmentation and analysis has been performed to distinguish the alloy material from its constituent components. Follow-on x-ray absorption near edge structure imaging was performed yielding absorption spectra for Cu, Cu6Sn5, and Li2CuSn. Analyses based on these spectra were performed on two-dimensional (2D) images of samples from cycled electrodes to assess chemical composition in Cu-containing phases. The capability to distinguish the different materials within mixed samples suggests that microstructure and composition changes resulting from lithiation and delithiation in Cu6Sn5 may be observed and better understood with 3D x-ray imaging methods. These methods are expected to be applicable to other intermetallic tin alloy electrodes.

Keywords: mapping high; microscopy; chemical mapping; ion; elemental chemical; ray

Journal Title: JOM
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.