LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Slow entropy for some smooth flows on surfaces

Photo by usgs from unsplash

We study slow entropy in some classes of smooth mixing flows on surfaces. The flows we study can be represented as special flows over irrational rotations and under roof functions… Click to show full abstract

We study slow entropy in some classes of smooth mixing flows on surfaces. The flows we study can be represented as special flows over irrational rotations and under roof functions which are C2 everywhere except one point (singularity). If the singularity is logarithmic asymmetric (Arnol’d flows), we show that in the scale an(t) = n(log n)t slow entropy equals 1 (the speed of orbit growth is n log n) for a.e. irrational α. If the singularity is of power type (x−γ, γ ∈ (0, 1)) (Kochergin flows), we show that in the scale an(t) = nt slow entropy equals 1 + γ for a.e. α.We show moreover that for local rank one flows, slow entropy equals 0 in the n(log n)t scale and is at most 1 for scale nt. As a consequence we get that a.e. Arnol’d and a.e Kochergin flow is never of local rank one.

Keywords: entropy equals; smooth flows; entropy smooth; flows surfaces; slow entropy

Journal Title: Israel Journal of Mathematics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.