We are interested in classifying groups of local biholomorphisms (or even formal diffeomorphisms) that can be endowed with a canonical structure of algebraic groups and their subgroups. Such groups are… Click to show full abstract
We are interested in classifying groups of local biholomorphisms (or even formal diffeomorphisms) that can be endowed with a canonical structure of algebraic groups and their subgroups. Such groups are called finitedimensional. We obtain that cyclic groups, virtually polycyclic groups, finitely generated virtually nilpotent groups and connected Lie groups of local biholomorphisms are finite-dimensional. We provide several methods to identify finite-dimensional groups and build examples.As a consequence we generalize results of Arnold, Seigal–Yakovenko and Binyamini on uniform estimates of local intersection multiplicities to bigger classes of groups, including for example virtually polycyclic groups and in particular finitely generated virtually nilpotent groups.
               
Click one of the above tabs to view related content.