LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Continuity of Gevrey–Hörmander pseudo-differential operators on modulation spaces

Photo by johntorcasio from unsplash

Let $$s\ge 1$$s≥1, $$\omega ,\omega _0\in {\mathscr {P}}_{E,s}^0$$ω,ω0∈PE,s0, $$a\in \Gamma _{s}^{(\omega _0)}$$a∈Γs(ω0), and let $${\mathscr {B}}$$B be a suitable invariant quasi-Banach function space. Then we prove that the pseudo-differential operator… Click to show full abstract

Let $$s\ge 1$$s≥1, $$\omega ,\omega _0\in {\mathscr {P}}_{E,s}^0$$ω,ω0∈PE,s0, $$a\in \Gamma _{s}^{(\omega _0)}$$a∈Γs(ω0), and let $${\mathscr {B}}$$B be a suitable invariant quasi-Banach function space. Then we prove that the pseudo-differential operator $${\text {Op}}(a)$$Op(a) is continuous from $$M(\omega _0\omega ,{\mathscr {B}})$$M(ω0ω,B) to $$M(\omega ,{\mathscr {B}})$$M(ω,B).

Keywords: differential operators; omega mathscr; continuity gevrey; pseudo differential

Journal Title: Journal of Pseudo-Differential Operators and Applications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.