Let $$s\ge 1$$s≥1, $$\omega ,\omega _0\in {\mathscr {P}}_{E,s}^0$$ω,ω0∈PE,s0, $$a\in \Gamma _{s}^{(\omega _0)}$$a∈Γs(ω0), and let $${\mathscr {B}}$$B be a suitable invariant quasi-Banach function space. Then we prove that the pseudo-differential operator… Click to show full abstract
Let $$s\ge 1$$s≥1, $$\omega ,\omega _0\in {\mathscr {P}}_{E,s}^0$$ω,ω0∈PE,s0, $$a\in \Gamma _{s}^{(\omega _0)}$$a∈Γs(ω0), and let $${\mathscr {B}}$$B be a suitable invariant quasi-Banach function space. Then we prove that the pseudo-differential operator $${\text {Op}}(a)$$Op(a) is continuous from $$M(\omega _0\omega ,{\mathscr {B}})$$M(ω0ω,B) to $$M(\omega ,{\mathscr {B}})$$M(ω,B).
               
Click one of the above tabs to view related content.