LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the local well-posedness of the nonlinear heat equation associated to the fractional Hermite operator in modulation spaces

Photo by villepalmu from unsplash

In this note we consider the nonlinear heat equation associated to the fractional Hermite operator $$H^\beta =(-\Delta +|x|^2)^\beta $$ H β = ( - Δ + | x | 2… Click to show full abstract

In this note we consider the nonlinear heat equation associated to the fractional Hermite operator $$H^\beta =(-\Delta +|x|^2)^\beta $$ H β = ( - Δ + | x | 2 ) β , $$0<\beta \le 1$$ 0 < β ≤ 1 . We show the local solvability of the related Cauchy problem in the framework of modulation spaces. The result is obtained by combining tools from microlocal and time-frequency analysis. As a byproduct, we compute the Gabor matrix of pseudodifferential operators with symbols in the Hörmander class $$S^m_{0,0}$$ S 0 , 0 m , $$m\in \mathbb {R}$$ m ∈ R .

Keywords: hermite operator; fractional hermite; nonlinear heat; associated fractional; heat equation; equation associated

Journal Title: Journal of Pseudo-Differential Operators and Applications
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.