In this note we consider the nonlinear heat equation associated to the fractional Hermite operator $$H^\beta =(-\Delta +|x|^2)^\beta $$ H β = ( - Δ + | x | 2… Click to show full abstract
In this note we consider the nonlinear heat equation associated to the fractional Hermite operator $$H^\beta =(-\Delta +|x|^2)^\beta $$ H β = ( - Δ + | x | 2 ) β , $$0<\beta \le 1$$ 0 < β ≤ 1 . We show the local solvability of the related Cauchy problem in the framework of modulation spaces. The result is obtained by combining tools from microlocal and time-frequency analysis. As a byproduct, we compute the Gabor matrix of pseudodifferential operators with symbols in the Hörmander class $$S^m_{0,0}$$ S 0 , 0 m , $$m\in \mathbb {R}$$ m ∈ R .
               
Click one of the above tabs to view related content.