LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biomarkers of Cardiac Stress and Cytokine Release Syndrome in COVID-19: A Review

Photo from wikipedia

Purpose of Review The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) resulted in the coronavirus 2019 (COVID-19) global pandemic. While primarily a respiratory virus, SARS-CoV-2 can cause myocardial injury. The… Click to show full abstract

Purpose of Review The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) resulted in the coronavirus 2019 (COVID-19) global pandemic. While primarily a respiratory virus, SARS-CoV-2 can cause myocardial injury. The pattern of injury, referred to as acute COVID-19 cardiovascular syndrome (ACovCS), is defined by cardiac troponin leak in the absence of obstructive coronary artery disease. Although the etiology of the injury is unknown, many speculate that a cytokine release syndrome (CRS) may be an important factor. We aim to review recent data concerning markers of cardiac injury in ACovCS and its relation to the CRS. Recent Findings Cardiac injury was common in patients hospitalized for COVID-19, with both cardiac troponin and B-type natriuretic peptide (BNP) being elevated in this population. Biomarkers were correlated with illness severity and increased mortality. Cytokines such as IL-6 were more often elevated in patients with ACovCS. Myocarditis evident on cardiac MR following COVID-19 may be associated with cardiac troponin levels. The impact of dexamethasone and remdesivir, two therapies shown to have clinical benefit in COVID-19, on myocardial injury is unknown. Summary Biomarkers of cardiac stress and injury in COVID-19 may be used to stratify risk in the future. Currently, there is no evidence that inhibition of cytokine release will reduce myocardial injury in patients with COVID-19.

Keywords: cytokine release; covid; review; injury; syndrome

Journal Title: Current Heart Failure Reports
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.