Industrial passion fruit juice production generates a large amount of passion fruit waste, which contains about 60% of fibers when dried and could be used as reinforcement of thermoplastic starch.… Click to show full abstract
Industrial passion fruit juice production generates a large amount of passion fruit waste, which contains about 60% of fibers when dried and could be used as reinforcement of thermoplastic starch. This study aimed to develop an extruded starchy bioplastic reinforced with passion fruit peel (Pfp) (0, 4, 10, 16, and 20%), glycerol (60, 64, 70, 76, and 80 wt%), and starch mix (55% corn and 45% cassava) that were processed at varied screw speeds (66, 80, 100, 120, and 134 rpm). The response surface methodology was applied to analyze the effects of Pfp, glycerol, and screw speed. Mechanical properties, contact angle, and water permeability and solubility were the response variables. Addition of Pfp, up to 4%, improved the bioplastic mechanical properties. High addition of Pfp (16 and 20%) combined with the lowest screw speed (66 rpm) reduced bioplastic water solubility. Water vapor permeability slightly increased with the combination of increasing glycerol content and screw speed. Contact angle was not statically affected by the independent variables. The extrusion showed as an interesting tool that provided greater homogeneity of Pfp incorporated in starch bioplastic, though the mix would benefit from finer Pfp particle size distribution.
               
Click one of the above tabs to view related content.