LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis of Chitin Oligosaccharides Using Dried Stenotrophomonas maltophilia Cells Containing a Transglycosylation Reaction-Catalyzing β-N-Acetylhexosaminidase as a Whole-Cell Catalyst

Photo from wikipedia

Bacterial strain NYT501, which we previously isolated from soil, was identified as Stenotrophomonas maltophilia, and it was confirmed that this strain produces an intracellular β-N-acetylhexosaminidase exhibiting transglycosylation activity. Several properties… Click to show full abstract

Bacterial strain NYT501, which we previously isolated from soil, was identified as Stenotrophomonas maltophilia, and it was confirmed that this strain produces an intracellular β-N-acetylhexosaminidase exhibiting transglycosylation activity. Several properties of this enzyme were characterized using a partially purified enzyme preparation. Using N,N′-diacetylchitobiose (GlcNAc)2 and N,N′,N″-triacetylchitotriose (GlcNAc)3 as substrates and dried cells of this bacterium as a whole-cell catalyst, chitin oligosaccharides of higher degrees of polymerization were synthesized. (GlcNAc)3 was generated from (GlcNAc)2 as the major transglycosylation product, and a certain amount of purified sample of the trisaccharide was obtained. By contrast, in the case of the reaction using (GlcNAc)3 as a substrate, the yield of higher-degree polymerization oligosaccharides was comparatively low.

Keywords: whole cell; chitin oligosaccharides; transglycosylation; stenotrophomonas maltophilia; cell catalyst

Journal Title: Applied Biochemistry and Biotechnology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.