LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structure, Molecular Modification, and Anti-radiation Activity of Melanin from Lachnum YM156 on Ultraviolet B-Induced Injury in Mice

Photo by tobia_sola from unsplash

The purpose of this study was to examine the protective effects of intracellular homogeneous melanin produced by Lachnum YM156 (LIM) against ultraviolet B (UVB) induced damage in mice. The possible… Click to show full abstract

The purpose of this study was to examine the protective effects of intracellular homogeneous melanin produced by Lachnum YM156 (LIM) against ultraviolet B (UVB) induced damage in mice. The possible structural formula of the LIM was concluded based on elemental analysis, ultraviolet–visible spectroscopy (UV–Vis), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and mass spectrometry (MS). The LIM was modified by arginine to improve its water solubility and biological activities. LIM and ALIM show significant anti-radiation activity in which LIM and ALIM protect the skin under UV radiation. Results indicate that activities of anti-oxidant enzymes in skin were improved after treatment of LIM or ALIM. In addition, LIM and ALIM inhibited over expression of the pro-inflammatory cytokines, including interleukin (IL)-1α, IL-1β, and IL-6 and tumor necrosis factor-α (TNF-α). The protection ability of ALIM was higher than that of LIM at the same dose. Thus, applied LIM and ALIM may be a promising radiation-protective agent.

Keywords: ultraviolet; lim alim; spectroscopy; lachnum ym156; radiation

Journal Title: Applied Biochemistry and Biotechnology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.