LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Natural Ligand for Metalloproteinase-A Multifaceted Drug Target

Photo by schluditsch from unsplash

Metalloproteinase is one of the key components of Russell viper venom and it is the root cause of edema, blood coagulation, local tissue damage, hemorrhage, and inflammation during snakebite envenoming.… Click to show full abstract

Metalloproteinase is one of the key components of Russell viper venom and it is the root cause of edema, blood coagulation, local tissue damage, hemorrhage, and inflammation during snakebite envenoming. Hence, finding a suitable metalloproteinase inhibitor from natural source will be of great biological importance in mitigating pathological effects. In this current study, we employed computational analysis to examine the inhibition of metalloproteinase by phytochemicals present in Andrographis paniculata. Molecular docking studies revealed interaction of A. paniculata phytochemicals with the catalytic M domain’s active site amino acid residues, namely ASN203, ARG293, PHE203, LEU206, LYS199, and ALA122, similar to that of the reference compound Batimastat. 14-acetylandrographolide, 14-deoxy-11,12 didehydroandrographolide, Andrograpanin, Isoandrographolide, and 14-deoxy-11-oxoandrographolide displayed high binding energy and inhibition against the metalloproteinase. Molecular dynamic simulation analysis revealed less root mean square fluctuation of amino acid residues of metalloproteinase-14-acetylandrographolide complex than metalloproteinase-Batimastat complex indicating the high stability for metalloproteinase with the phytochemical. In silico analysis of parameters like ADME properties and drug-likeness of the phytochemicals exhibited good pharmacokinetic properties. Ligand-based virtual screening of phytochemicals to identify similarity to FDA-approved drugs and identification of their possible targets were also performed. The outcome of the current study strengthens the significance of these phytochemicals as promising lead candidates for the treatment of snakebite envenomation. Moreover, the study also encourages the in vivo and in vitro evaluation of the phytochemicals to validate the computational findings.

Keywords: metalloproteinase; multifaceted drug; metalloproteinase multifaceted; drug; ligand metalloproteinase; natural ligand

Journal Title: Applied Biochemistry and Biotechnology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.