LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Chlorogenic Acid Ameliorates Lead-Induced Renal Damage in Mice

Photo from wikipedia

Lead (Pb) exposure is a global environmental problem and its exposure can lead to serious renal damage by disturbing the pro-oxidant/antioxidant balance and facilitating inflammation. Chlorogenic acid (CGA) is one… Click to show full abstract

Lead (Pb) exposure is a global environmental problem and its exposure can lead to serious renal damage by disturbing the pro-oxidant/antioxidant balance and facilitating inflammation. Chlorogenic acid (CGA) is one of the most abundant polyphenols in the diet and has been reported to have many biological properties such as antioxidant and anti-inflammatory. In this study, we aimed to investigate the protective efficacy and mechanism of CGA against Pb-induced nephrotoxicity in mice. The results showed that CGA inhibited Pb-induced bodyweight loss, reduced kidney coefficients, and alleviated renal function and structure. Exploration on the potential mechanism demonstrated that CGA suppressed Pb-induced inflammation in the kidney by regulating NF-κB pathway activation. Furthermore, CGA significantly increased Pb-induced reduction in the activity of SOD and GSH-Px, and reduced Pb-induced increase in the content of MDA. The expression of Bax and Bcl-2 associated with apoptosis was also significantly regulated by CGA. These data indicated that CGA may play a potential treatment strategy for Pb toxicity.

Keywords: renal damage; chlorogenic acid; mice; cga

Journal Title: Biological Trace Element Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.