The development of metallomics techniques has allowed for metallomics analysis of biological systems, enabling a better understanding of the response mechanisms for different stimuli, their relationship to metallic species, and… Click to show full abstract
The development of metallomics techniques has allowed for metallomics analysis of biological systems, enabling a better understanding of the response mechanisms for different stimuli, their relationship to metallic species, and the characterization of biomarkers. In this study, a metallomics analysis of the muscle tissue of Nile tilapia was used to aid the understanding of the molecular mechanisms involved in zinc absorption in this fish species when fed organic and/or inorganic sources of zinc and to identify possible biomarkers for the absorption of this micromineral. To accomplish this, the fish were separated into three groups of 24 g, 74 g, and 85 g initial weights, and each group, respectively, was fed a zinc-free diet (control group, G1), a diet containing zinc found in organic sources (treatment 1, G2), and a diet containing zinc from an inorganic source (treatment 2, G3). Two-dimensional polyacrylamide (2D PAGE) gel electrophoresis was used to separate the proteins of the muscle tissue. Subsequently, the expression profiles of protein spots in the samples where zinc was applied in different concentrations were compared, using the software ImageMaster 2D Platinum version 7.0, to identify proteins that were differentially expressed. The identified proteins were then exposed to atomic absorption spectrometry in a graphite furnace to determine zinc mapping and were subsequently characterized via electrospray ionization tandem mass spectrometry (ESI-MS/MS). The metallomic analysis identified 15 proteins differentially expressed and associated with zinc, leading to the conclusion that three metal-binding proteins presented as possible biomarkers of zinc absorption in fish.
               
Click one of the above tabs to view related content.