Lead (Pb) exposure can induce the severe deleterious damage on the central nervous system (CNS). High-fat diet also has been suggested that it had some adverse effects on learning and… Click to show full abstract
Lead (Pb) exposure can induce the severe deleterious damage on the central nervous system (CNS). High-fat diet also has been suggested that it had some adverse effects on learning and memory, cognitive function, but there is lack of study on Pb and high-fat diet co-exposure on the CNS damage. In this study, the goal was to explore the effect of Pb on the cognitive function of mice with high-fat diet and to investigate whether Nrf2 signaling pathway acts in the cerebral cortex. C57BL/6J mice were randomly divided into control, high-fat diet, Pb (drinking water with 250 mg/L lead acetate), and high-fat diet with Pb (drinking water with 250 mg/L lead acetate) co-exposure groups for 12 weeks. Experiment data showed that learn memory and exploration ability of mice obviously decreased in Pb and high-fat diet, and reactive oxygen species (ROS) increased; then, the protein expressions of Nrf2, heme oxygenase-1, NADP(H):dehydrogenase quinone 1, and superoxide dismutase 2 were lower significantly compared with those in the control group. This study suggested that down-expressed Nrf2 signaling pathway possibly related to the cognitive dysfunction induced by Pb and high-fat diet co-exposure.
               
Click one of the above tabs to view related content.