LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Arsenic Trioxide Triggers Mitochondrial Dysfunction, Oxidative Stress, and Apoptosis via Nrf 2/Caspase 3 Signaling Pathway in Heart of Ducks.

Photo from wikipedia

Arsenic is a common environmental pollutant and poses a serious threat to human and animal health. In this study, we used the ducks to mimic arsenic trioxide (ATO) exposure and… Click to show full abstract

Arsenic is a common environmental pollutant and poses a serious threat to human and animal health. In this study, we used the ducks to mimic arsenic trioxide (ATO) exposure and investigated the mechanism of cardiac toxicity. The results indicated that ATO inhibited the body and organ growth of ducks, led to an increase in LDH content, and caused obvious deformity, ischemia infarction. It is found that ATO exacerbated the swell of mitochondrial and the contraction of cell nuclei in the heart of ducks through transmission electron microscopy (TEM). ATO also induced an increase in MDA content; inhibited the activation of the Nrf 2 pathway; downregulated the expression of mRNA and protein of Nrf 2, HO-1, and SOD-1; and upregulated the expression of mRNA and protein of Keap 1. At the same time, ATO induced apoptosis which not only upregulated the expression levels of mRNA and proteins (Caspase 3, Cyt-C, P53, Bax) but also decreased the mRNA and protein expression level of Bcl-2. These results indicated that ATO can lead to oxidative stress and apoptosis in the heart of ducks. In general, our research shows that ATO triggers mitochondrial dysfunction, oxidative stress, and apoptosis via Nrf 2/Caspase 3 signaling pathway in the heart of ducks.

Keywords: heart; heart ducks; oxidative stress; stress apoptosis

Journal Title: Biological trace element research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.