LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

HIV Tat Protein Induces Myocardial Fibrosis Through TGF-β1-CTGF Signaling Cascade: A Potential Mechanism of HIV Infection-Related Cardiac Manifestations.

Photo from wikipedia

Human immunodeficiency virus (HIV) infection is a risk factor of cardiovascular diseases (CVDs). HIV-infected patients exhibit cardiac dysfunction coupled with cardiac fibrosis. However, the reason why HIV could induce cardiac… Click to show full abstract

Human immunodeficiency virus (HIV) infection is a risk factor of cardiovascular diseases (CVDs). HIV-infected patients exhibit cardiac dysfunction coupled with cardiac fibrosis. However, the reason why HIV could induce cardiac fibrosis remains largely unexplored. HIV-1 trans-activator of transcription (Tat) protein is a regulatory protein, which plays a critical role in the pathogenesis of various HIV-related complications. In the present study, recombinant Tat was administered to mouse myocardium or neonatal mouse cardiac fibroblasts in different doses. Hematoxylin-eosin and Masson's trichrome staining were performed to observe the histological changes of mice myocardial tissues. EdU staining and MTS assay were used to evaluate the proliferation and viability of neonatal mouse cardiac fibroblasts, respectively. Real-time PCR and western blot analysis were used to detect CTGF, TGF-β1, and collagen I mRNA and protein expression levels, respectively. The results showed that Tat promoted the occurrence of myocardial fibrosis in mice. Also, we found that Tat increased the proliferative ability and the viability of neonatal mouse cardiac fibroblasts. The protein and mRNA expression levels of TGF-β1 and CTGF were significantly upregulated both in Tat-treated mouse myocardium and neonatal mouse cardiac fibroblasts. However, co-administration of TGF-β inhibitor abrogated the enhanced expression of collagen I induced by Tat in neonatal mouse cardiac fibroblasts. In conclusion, Tat contributes to HIV-related cardiac fibrosis through enhanced TGF-β1-CTGF signaling cascade.

Keywords: protein; fibrosis; mouse cardiac; hiv; ctgf; neonatal mouse

Journal Title: Cardiovascular toxicology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.