LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optic Nerve Sheath Viscoelastic Properties: Re-Examination of Biomechanical Behavior and Clinical Implications

Photo from wikipedia

Meta-analyses show a variable relationship between optic nerve sheath diameter (ONSD) and the presence of raised intracranial pressure (ICP). Because optic nerve sheath (ONS) tissue can be deformed, it is… Click to show full abstract

Meta-analyses show a variable relationship between optic nerve sheath diameter (ONSD) and the presence of raised intracranial pressure (ICP). Because optic nerve sheath (ONS) tissue can be deformed, it is possible that ONSD reflects not only the current ICP but also prior deforming biomechanical exposures. In this post hoc analysis of two published data sets, we characterize ONS Young’s modulus (E, mechanical stress per unit of strain) and calculate threshold pressure for plastic deformation. The authors of two previously published articles contributed primary data for these unique post hoc analyses. Human cadaveric ex vivo measurements of ONSD (n = 10) and luminal distending pressure (range 5 to 65 mm Hg) were used to calculate E and the threshold pressure for plastic deformation. Clinical in vivo measurements of ONSD and ICP during endotracheal tube suction from patients with traumatic brain injury (n = 15) were used to validate the ex vivo cadaveric findings. Ex vivo ONS estimate of E was 140 ± 1.3 mm Hg (mean ± standard error), with evidence of plastic deformation occurring with distending pressure at 45 mm Hg. Similar E (71 ± 10 mm Hg) was estimated in vivo with an average ICP of 34 ± 2 mm Hg. Ex vivo, ONS plastic deformation occurs at levels of pressure commonly seen in patients with raised ICP, leading to distortion of the ICP–ONSD relationship. This evidence of plastic deformation may illustrate why meta-analyses fail to identify a single threshold in ONSD associated with the presence of raised ICP. Future studies characterizing time-dependent viscous characteristics of the ONS will help determine the time course of ONS tissue biomechanical behavior.

Keywords: pressure; optic nerve; plastic deformation; nerve sheath

Journal Title: Neurocritical Care
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.