LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanism of miR-320 in Regulating Biological Characteristics of Ischemic Cerebral Neuron by Mediating Nox2/ROS Pathway

Photo by papaioannou_kostas from unsplash

This study aimed to explore the mechanism of miR-320 in regulating biological characteristics of ischemic cerebral neuron by mediating Nox2/ROS pathway. Primary neurons were cultured and grouped: normal group (normal… Click to show full abstract

This study aimed to explore the mechanism of miR-320 in regulating biological characteristics of ischemic cerebral neuron by mediating Nox2/ROS pathway. Primary neurons were cultured and grouped: normal group (normal primary neurons), negative control (NC) group (ischemic primary neurons, transfected with negative control plasmid), model group (ischemic primary neurons), miR-320 mimic group (ischemic primary neurons, transfected with miR-320-overexpressed plasmid), Nox2 vector group (ischemic primary neurons, transfected with Nox2-overexpressed plasmid), and miR-320 mimic + Nox2 vector group (ischemic primary neurons, co-transfected with miR-320- and Nox2-overexpressed plasmid). Dual-luciferase reporter assay showed that there was the target relationship between miR-320 and Nox2. miR-320 expression was significantly decreased, and Nox2 expression was significantly increased in the rest groups compared with normal group (both P  < 0.05). There was a co-localization of miR-320 and Nox2 in the cytoplasm. Cell proliferation, contents of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX), and mRNA and protein expressions of Ki67, Bcl-2, and c-myc were significantly declined, and apoptosis rate, contents of malondialdehyde (MDA) and reactive oxygen species (ROS), and caspase-3 mRNA and protein expressions were significantly increased in the rest groups compared with normal group (all P  < 0.05). miR-320 promoted cell proliferation; increased contents of SOD, CAT, and GSH-PX; and declined apoptosis and contents of MDA and ROS. Moreover, miR-320 could affect the regulation of Nox2/ROS pathway on ischemic cerebral neuron by negatively regulating Nox2 expression. Overexpressed miR-320 affects the proliferation, apoptosis, and oxidative stress injury of ischemic cerebral neuron by inhibiting Nox2/ROS pathway.

Keywords: nox2 ros; primary neurons; group; ischemic cerebral; cerebral neuron; mir 320

Journal Title: Journal of Molecular Neuroscience
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.