LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deployment of Stacked Antimicrobial Genes in Banana for Stable Tolerance Against Fusarium oxysporum f.sp. cubense Through Genetic Transformation

Photo from wikipedia

Enhanced tolerance to wilt disease (Fusarium oxysporum f.sp. cubense) was achieved in banana variety Rasthali (AAB) by the transformation of embryogenic cells with two antimicrobial genes viz., Ace-AMP1 and pflp… Click to show full abstract

Enhanced tolerance to wilt disease (Fusarium oxysporum f.sp. cubense) was achieved in banana variety Rasthali (AAB) by the transformation of embryogenic cells with two antimicrobial genes viz., Ace-AMP1 and pflp using Agrobacterium mediated transformation. The transgene copy numbers in stable transformants were confirmed by Southern analysis. The expression of stacked genes in the transgenic lines was validated by RT-PCR as well as Northern analysis. Bioassay using Foc race 1 in pot culture experiments demonstrated enhanced tolerance after 180 days of planting. Two independent transformants showed 10–20% Vascular Discoloration Index compared to untransformed banana cv. Rasthali (96%). The stacked lines revealed higher activity of Super Oxide Dismutase and Peroxidase compared to untransformed control which depicted higher tolerance to oxidative stress caused by Foc infection.

Keywords: fusarium oxysporum; tolerance; transformation; antimicrobial genes; oxysporum cubense

Journal Title: Molecular Biotechnology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.