LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Knockdown of Long Non-coding RNA TUG1 Suppresses Migration and Tube Formation in High Glucose-Stimulated Human Retinal Microvascular Endothelial Cells by Sponging miRNA-145

Photo by matnapo from unsplash

Diabetic retinopathy (DR) is a serious complication of diabetes mellitus. The purpose of this study was to investigate the potential functional role of long non-coding RNA TUG1 in high glucose… Click to show full abstract

Diabetic retinopathy (DR) is a serious complication of diabetes mellitus. The purpose of this study was to investigate the potential functional role of long non-coding RNA TUG1 in high glucose (HG)-stimulated human retinal microvascular endothelial cells (hRMECs). The results demonstrated that following 72 h of HG stimulation, enhanced proliferation, migration, and tube formation process were observed in hRMECs. Moreover, HG treatment markedly increased TUG1 expression in hRMECs, and knockdown of TUG1 notably restrained the aberrant phenotypes of hRMECs induced by HG. Mechanistically, TUG1 may serve as a competing endogenous RNA (ceRNA) for miR-145, thereby blocking the repression on VEGF-A in hRMECs. Rescue experiments further indicated that inhibition of miR-145 abolished the beneficial role of TUG1 knockdown in HG-treated hRMECs. Our data suggested that knockdown of TUG1 protects hRMECs against HG stimulation partly by regulating miR-145/VEGF-A axis.

Keywords: tug1; rna; long non; rna tug1; non coding; coding rna

Journal Title: Molecular Biotechnology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.