LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparative study of structural, optical and magnetic properties of Fe–Pt, Fe–Cu and Fe–Pd-codoped $$\hbox {WO}_{3}$$WO3 nanocrystalline ceramics: effect of annealing in hydrogen atmosphere

Photo from archive.org

Tungsten oxide (W-oxide) nanoparticles doped and codoped with different transition-metal (TM) ions (Fe, Pt, Cu and Pd) were synthesized by hydrochloric acid-assisted precipitation. The synthesized powders were characterized by X-ray… Click to show full abstract

Tungsten oxide (W-oxide) nanoparticles doped and codoped with different transition-metal (TM) ions (Fe, Pt, Cu and Pd) were synthesized by hydrochloric acid-assisted precipitation. The synthesized powders were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS) and magnetic characterization methods. The room temperature (RT) monoclinic (P21/n) structure founded for pristine $$\hbox {WO}_{3}$$WO3 nanopowder was converted into orthorhombic (Pbam) structure by Fe-doping, while codoping, (Fe–Pt) and (Fe–Cu) preserved the P21/n space group (SG) structure. It was found that the hydrogenation of the synthesized doped-samples corroded the crystallites without changing the crystalline SG structure. Moreover, controllable room temperature ferromagnetic (RT-FM) properties were created by hydrogenation of the codoped W-oxide samples. The oxygen vacancies-mediated ferromagnetic (FM) interaction could be responsible for the observed FM. The relative highest RT-FM energy was created with hydrogenated Fe–Pd codoped W-oxide. Therefore, Fe–Pd-codoped W-oxide nanopowder could be considered as a potential candidate for many applications involving partial FM properties, such as catalysts and optical phosphors.Graphical Abstract

Keywords: hbox wo3; comparative study; codoped oxide; structure

Journal Title: Bulletin of Materials Science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.