LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaporation-driven self-assembly in the mixtures of micro and nanoparticles

Photo from wikipedia

We report experimental studies on the self-assembly of silica microspheres and Laponite nanoplatelets (NPs) in evaporating sessile droplets and in thin films, respectively. A ring-like stain of the silica microspheres… Click to show full abstract

We report experimental studies on the self-assembly of silica microspheres and Laponite nanoplatelets (NPs) in evaporating sessile droplets and in thin films, respectively. A ring-like stain of the silica microspheres with positional order is observed after the evaporation of sessile droplets due to the coffee-ring effect. This effect is suppressed in the binary mixtures of silica microspheres and Laponite NPs. A depletion zone has been observed in the mixtures during the sessile droplet evaporation, the width of which can be tuned by varying the compositions. We demonstrate a simple method for preparing core–shell particles by evaporating thin films of binary mixtures in which the Laponite NPs self-assemble to form a crystalline shell on the amorphous silica microspheres. We present a possible orientation of the Laponite NPs in the shell.

Keywords: driven self; evaporation driven; self assembly; assembly mixtures; laponite nps; silica microspheres

Journal Title: Bulletin of Materials Science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.