LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Docosahexaenoic Acid (DHA) Induced Morphological Differentiation of Astrocytes Is Associated with Transcriptional Upregulation and Endocytosis of β2-AR

Docosahexaenoic acid (DHA), an important ω-3 fatty acid, is abundantly present in the central nervous system and is important in every step of brain development. Much of this knowledge has… Click to show full abstract

Docosahexaenoic acid (DHA), an important ω-3 fatty acid, is abundantly present in the central nervous system and is important in every step of brain development. Much of this knowledge has been based on studies of the role of DHA in the function of the neurons, and reports on its effect on the glial cells are few and far between. We have previously reported that DHA facilitates astrocyte differentiation in primary culture. We have further explored the signaling mechanism associated with this event. It was observed that a sustained activation of the extracellular signal-regulated kinase (ERK) appeared to be critical for DHA-induced differentiation of the cultured astrocytes. Prior exposure to different endocytic inhibitors blocked both ERK activation and differentiation of the astrocytes during DHA treatment suggesting that the observed induction of ERK-2 was purely endosomal. Unlike the β1-adrenergic receptor (β1-AR) antagonist, atenolol, pre-treatment of the cells with the β2-adrenergic receptor (β2-AR) antagonist, ICI-118,551 inhibited the DHA-induced differentiation process, indicating a downstream involvement of β2-AR in the differentiation process. qRT-PCR and western blot analysis demonstrated a significant induction in the mRNA and protein expression of β2-AR at 18–24 h of DHA treatment, suggesting that the induction of β2-AR may be due to transcriptional upregulation. Moreover, DHA caused activation of PKA at 6 h, followed by activation of downstream cAMP response element-binding protein, a known transcription factor for β2-AR. Altogether, the observations suggest that DHA upregulates β2-AR in astrocytes, which undergo endocytosis and signals for sustained endosomal ERK activation to drive the differentiation process.

Keywords: docosahexaenoic acid; dha induced; dha; differentiation; activation

Journal Title: Molecular Neurobiology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.