LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Ooty Wide Field Array

Photo by drew_hays from unsplash

We describe here an ongoing upgrade to the legacy Ooty Radio Telescope (ORT). The ORT is a cylindrical parabolic cylinder 530 m × 30 m in size operating at a… Click to show full abstract

We describe here an ongoing upgrade to the legacy Ooty Radio Telescope (ORT). The ORT is a cylindrical parabolic cylinder 530 m × 30 m in size operating at a frequency of 326.5 (or z∼3.35 for the HI 21-cm line). The telescope has been constructed on a North–South hill slope whose gradient is equal to the latitude of the hill, making it effectively equatorially mounted. The feed consists of an array of 1056 dipoles. The key feature of this upgrade is the digitization and cross-correlation of the signals of every set of 4-dipoles. This converts the ORT into a 264 element interferometer with a field-of-view of 2∘×27.4∘cos(δ). This upgraded instrument is called the Ooty Wide Field Array (OWFA). This paper briefly describes the salient features of the upgrade, as well as its main science drivers. There are three main science drivers viz. (1) observations of the large scale distribution of HI in the post-reionization era, (2) studies of the propagation of plasma irregularities through the inner heliosphere and (3) blind surveys for transient sources. More details on the upgrade, as well as on the expected science uses can be found in other papers in this special issue.

Keywords: science; field; field array; wide field; ooty wide

Journal Title: Journal of Astrophysics and Astronomy
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.