The protective effect of astrocytes on nerves was demonstrated by mitochondrial transfer. The neuroprotective effect of hypoxic pretreatment is widely accepted. The aim of this research is to investigate the… Click to show full abstract
The protective effect of astrocytes on nerves was demonstrated by mitochondrial transfer. The neuroprotective effect of hypoxic pretreatment is widely accepted. The aim of this research is to investigate the role of hypoxic preconditioning on astrocytes mitochondria. Rat neuronal cells and astrocytes were isolated and cultured. A hypoxic preconditioned astrocyte and oxygen glucose deprivation (OGD) neuronal cell co-culture experiment was used to detect the effect of hypoxic preconditioning (HP) on nerve damage. The silencing of proliferator-activated receptor γ coactivator-1α (PGC-1α) with siRNA was used to explore the role of HP in the repair of nerve damage and biogenesis of mitochondria. HP increased astrocyte viability and promoted neuroprotective factor secretion. The expression levels of antioxidant enzymes, PGC-1α and uncoupling protein2 (UCP2) were up-regulated by HP. In addition, HP improved mitochondrial function and reduced oxidative stress induced by OGD. It was found that HP astrocytes had a greater neuroprotective effect than normal astrocytes cells. Neuronal apoptosis and reactive oxygen species levels were down-regulated by cell co-culture. The PGC-1α siRNA experiment showed that hypoxia treatment promotes mitochondrial biogenesis and plays a neuroprotective role. HP significantly enhanced the efficacy of astrocytes in the treatment of neuronal injury.
               
Click one of the above tabs to view related content.