LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Distribution and sources of carbon, nitrogen, phosphorus and biogenic silica in the sediments of Chilika lagoon

Photo by mike_swigunski from unsplash

The present study investigated the spatial and vertical distribution of organic carbon (OC), total nitrogen (TN), total phosphorus (TP) and biogenic silica (BSi) in the sedimentary environments of Asia’s largest… Click to show full abstract

The present study investigated the spatial and vertical distribution of organic carbon (OC), total nitrogen (TN), total phosphorus (TP) and biogenic silica (BSi) in the sedimentary environments of Asia’s largest brackish water lagoon. Surface and core sediments were collected from various locations of the Chilika lagoon and were analysed for grain-size distribution and major elements in order to understand their distribution and sources. Sand is the dominant fraction followed by silt + clay. Primary production within the lagoon, terrestrial input from river discharge and anthropogenic activities in the vicinity of the lagoon control the distribution of OC, TN, TP and BSi in the surface as well as in the core sediments. Low C/N ratios in the surface sediments (3.49–3.41) and cores (4–11.86) suggest that phytoplankton and macroalgae may be major contributors of organic matter (OM) in the lagoon. BSi is mainly associated with the mud fraction. Core C5 from Balugaon region shows the highest concentration of OC ranging from 0.58–2.34%, especially in the upper 30 cm, due to direct discharge of large amounts of untreated sewage into the lagoon. The study highlights that Chilika is a dynamic ecosystem with a large contribution of OM by autochthonous sources with some input from anthropogenic sources as well.

Keywords: lagoon; chilika lagoon; phosphorus biogenic; biogenic silica; distribution sources; distribution

Journal Title: Journal of Earth System Science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.