LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Velocity anisotropy analysis for shale lithology of the complex geological section in Jaisalmer sub-basin, India

Photo from wikipedia

Measurement of velocity anisotropy is an essential parameter for capturing the heterogeneity of sub-surface geology to characterise the hydrocarbon-bearing reservoir. The incorporation of velocity anisotropy parameters during the preparation of… Click to show full abstract

Measurement of velocity anisotropy is an essential parameter for capturing the heterogeneity of sub-surface geology to characterise the hydrocarbon-bearing reservoir. The incorporation of velocity anisotropy parameters during the preparation of the 3D velocity model represents a robust result in a challenging geological set-up during interpretation. Generally, we can observe that the shale formation is more sensitive to velocity anisotropy response in comparison with other formations such as sandstone, siltstone for clastic reservoir or limestone and dolomite for carbonate reservoir. This study was performed mostly in the high amount shale section mixed with limestone and claystone of the Jaisalmer sub-basin area which lies in the western part of India. The preparation of the velocity model for frequent changes of lithology in the clastic and carbonate reservoir is challenging due to several changes of velocity which show a limitation in the result of the gridded velocity model. The objective of this study is to capture the changes of compressional and shear wave velocity in mixed lithology of the significant shale formation. The idea was due to the inclusion of the anisotropy incorporated changed velocity during the preparation of the gridded velocity model for correctly identified lithology. The shale formation which is the zone of investigation of the current study is situated over a carbonate sequence, and an estimated velocity anisotropy factor of this shale formation will contribute significantly during the cumulative study of velocity modelling of all formation. The current study shows that shale formation shows the character of orthorhombic anisotropy; however, this study was performed based on significant changes of well log data and related effects of vertically transverse isotropic parameters of the shale formation. The fundamental Thomsen anisotropy parameters were estimated by capturing the deviation of five independent stiffness coefficients. Significant changes in evaluated shale velocity were observed after the incorporation of the estimated Thomsen parameter in velocity values.

Keywords: velocity anisotropy; velocity; study; shale formation

Journal Title: Journal of Earth System Science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.