LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Analytical solution for solute transport from a pulse point source along a medium having concave/convex spatial dispersivity within fractal and Euclidean framework

Photo by mariusoprea from unsplash

In the present study, analytical solutions of the advection dispersion equation (ADE) with spatially dependent concave and convex dispersivity are obtained within the fractal and the Euclidean frameworks by using… Click to show full abstract

In the present study, analytical solutions of the advection dispersion equation (ADE) with spatially dependent concave and convex dispersivity are obtained within the fractal and the Euclidean frameworks by using the extended Fourier series method. The dispersion coefficient is considered to be proportional to the nth power of a non-homogeneous quadratic spatial function, where the index n is considered to vary between 0 and 1.5 so that the spatial dependence of dispersivity remains within the limit to describe the heterogeneity in the fractal framework. Real values like n=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ n = $$\end{document} 0.5 and 1.5 are considered to delineate heterogeneity of the aquifer in the fractal framework, whereas integral values like n = 1 represent the same in the Euclidean sense. A concave or convex variation is free from demanding a limiting value as in the case of linear variation, hence it is more appropriate in the ambience of many disciplines in which ADE is used. In this study, concentration at the source site remains uniform until the source is present and becomes zero once it is annihilated forever. The analytical solutions, validated through the respective numerical solutions, are obtained in the form of an extended Fourier series with only first five terms. They are convergent to the desired concentration pattern and are stable with the Peclet number. It has been possible because of the formulation of a new Sturm–Liouville problem with advective information. The analytical solutions obtained in this paper are novel.

Keywords: framework; source; dispersivity; fractal euclidean; concave convex; within fractal

Journal Title: Journal of Earth System Science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.