LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The role of ubiquitin-conjugating enzyme Ube2j1 phosphorylation and its degradation by proteasome during endoplasmic stress recovery

Photo by sharonmccutcheon from unsplash

The human Ube2j1 and Ube2j2 are the only ubiquitin-conjugating enzymes (E2s) that are localized to endoplasmic reticulum (ER) through its C-terminal transmembrane domains. Ube2j1 is a known substrate of MAPK… Click to show full abstract

The human Ube2j1 and Ube2j2 are the only ubiquitin-conjugating enzymes (E2s) that are localized to endoplasmic reticulum (ER) through its C-terminal transmembrane domains. Ube2j1 is a known substrate of MAPK signalling pathway and it is phosphorylated at serine-184 during ER stress. Here, we demonstrate that Ube2j1, not Ube2j2 is essential for the recovery of cells from transient ER stress. The ectopic expression of wild-type Ube2j1 and phospho-mimic mutant, Ube2j1S184D but not phospho-mutant Ube2j1S184A can recover cells from ER stress. We also found that ubiquitin-ligase (E3), c-IAP1 preferentially interacts with phosphorylated Ube2j1. Moreover, we noticed that phosphorylated Ube2j1 is rapidly degraded by the proteasome during ER stress cell recovery. Taken together, these data suggest that Ube2j1 and its phosphorylation is important for transient ER stress cell recovery and the phosphorylated Ube2j1 is degraded by the proteasome.

Keywords: recovery; ube2j1 phosphorylation; phosphorylated ube2j1; stress; ubiquitin conjugating

Journal Title: Journal of Cell Communication and Signaling
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.