Linear codes with few weights have applications in data storage systems, secret sharing schemes, and authentication codes. In this paper, a class of p-ary two-weight linear codes is constructed using… Click to show full abstract
Linear codes with few weights have applications in data storage systems, secret sharing schemes, and authentication codes. In this paper, a class of p-ary two-weight linear codes is constructed using a generic construction developed by Ding et al. recently, where p is a prime. Their length and weight distribution are closed-form expressions of Kloosterman sums over prime finite fields, and are completely determined when p = 2 and p = 3. The dual of this class of linear codes is also studied and is shown to be optimal or almost optimal in the binary case.
               
Click one of the above tabs to view related content.